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Abstract 
A new projection description for a cubic quasiperi- 
odic crystal (CQC), including a projection matrix, 
diffraction-intensity calculation and a linear phason 
matrix, has been proposed. The simulated electron 
diffraction patterns with appropriate phason param- 
eters agree well with the experimental ones obtained 
for a rapidly solidified V6Nil6Si7 alloy. The transition 
from the CQC to its crystalline approximants is 
treated using the linear-phason-strain concept. 

1. Introduction 
Since the discovery of the icosahedral quasicrystal 
(IQC) in A1-Mn alloys (Shechtman, Blech, Gratias & 
Cahn, 1984), other quasiperiodic crystal (QCs) have 
been reported, such as the decagonal (Bendersky, 
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1985), dodecagonal (Ishimasa, Nissen & Fukano, 
1985) and octagonal (Wang, Chen & Kuo, 1987) 
phases. All these quasiperiodic crystals have noncrys- 
tallographic point symmetries and can be described 
with quasiperiodic (QP) tilings projected from a 
higher-dimensional periodic lattice. However, it is 
possible to construct QP tilings of crystallo- 
graphically permissible orientational symmetries. For 
example, Baranidharan, Balagurusamy, Srinivasan, 
Gopal & Sasisekharan (1989) constructed a QP tiling 
with fourfold symmetry and Kulkarni (1989) gener- 
ated a two-dimensional (2D) QP structure belonging 
to the 4mm point-symmetry group using a modified 
strip-projection method. This QP structure was inter- 
preted as a superlattice structure of the face-centred- 
cubic disordered Ni-Mo alloy. 

Recently, Janssen (1992) deduced symmetry opera- 
tions of all possible two- and three-dimensional QP 
structures of rank 4, 5 or 6, including both noncrys- 
tallographic point symmetries such as five-, eight-, 
ten- and twelvefold symmetries and crystallographic 
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point symmetries such as two-, three-, four- and 
sixfold symmetries. Indeed, Feng, Lu & Withers 
(1989) found an incommensurate structure with 
cubic point-group symmetry in a rapidly solidified 
V6Ni~6Si7 alloy and then Feng et al. (1990) proposed 
a projection model of a cubic quasiperiodic crystal 
(CQC) to describe the experimental electron diffrac- 
tion patterns (EDPs) found in the rapidly solidified 
V6Nil6Si7 alloy. 

On the other hand, the concept of linear phason 
strain (Lubensky, Socolar, Steinhardt, Bancel & 
Heiney, 1986) has been extensively used to describe 
some deviations of observed structure and diffraction 
patterns from idealized QCs. In some alloys, a QC 
coexists with its crystalline approximants and some 
intermediate states between them. The linear-phason- 
strain treatment has been successfully used to 
describe the transition from idealized QCs through 
intermediate states to their crystalline approximants 
in the case of icosahedral (see, for example, Mai, 
Tao, Zhang & Zeng, 1989), decagonal (see, for 
example, Zhang & Kuo, 1990) and octagonal (Mai et 
al., 1989) QCs. 

In the present paper, we provide more experimen- 
tal results observed in the rapidly solidified V6Ni~6Si7 
alloy and propose a new projection description for 
the CQC, including an appropriate projection 
matrix, diffraction-intensity calculation, linear 
phason matrix and a method for drawing section- 
projection diagrams. Then, we use this description of 
the CQC to calculate the EDPs and to draw the 
corresponding section-projection diagrams of the 
CQC with different values of the phason parameter 
ft. The simulated EDPs with appropriate fl values 
agree well with the experimental ones obtained in the 
rapidly solidified V6Nil6Si7 alloy. Finally, the transi- 
tion from the CQC to crystalline approximants is 
discussed using the linear-phason-strain concept. 
Compared with the description proposed by Feng et 
al. (1990), the description in the present paper makes 
use of a more appropriate projection matrix, which 
allows one to describe correctly both the EDPs and 
the structure model of the V6Ni16Si7 CQC. It can 
also be used to introduce a linear phason strain 
explicitly and to study the phase transition from pure 
CQC through CQC with phason strain to the crystal- 
line approximants. 

2.  P r o j e c t i o n  d e s c r i p t i o n  o f  the  c u b i c  q u a s i p e r i o d i c  
c r y s t a l  

2.1. General principles of  the projection method 

Many types of quasilattice may be described by 
projecting a six-dimensional (6D) cubic lattice with 
basis vectors e = [el, e2, ..., e6] into three- 
dimensional (3D) physical space. These basis vectors 

possessthe~llowingmetrictensor:  
u 

1 0 0 0 0 0  

0 1 0 0 0 0  

0 0 1 0 0 0  
G = e r e = A  z , (1) 

0 0 0 1 0 0  

0 0 0 0 1 0  

0 0 0 0 0 1  
m m 

where the superscript T indicates the transpose of the 
matrix. Equation (1) shows that these basis vectors 
are orthogonal to each other and their moduli are A. 
The inverse of the metric G is 

1 

0 

1 0 
G - 1 = A  --~ 0 

0 

0 
D 

M 

0 0 0 0 0  

1 0 0 0 0  

0 1 0 0 0  

0 0 1 0 0 '  

0 0 0 1 0  

0 0 0 0 1  

(2) 

from which we can construct the reciprocal basis 
vectors e* = [el*, e2*, . . . ,  e6*] as follows: 

e *T = G- le t .  (3) 

These reciprocal basis vectors e,* are also orthogo- 
nal, with moduli A* = 1/A. 

Now, we introduce a reciprocal metric tensor: 

G* = e ' re  *. (4) 

By inserting (3) into (4), one obtains 

G * = ( G - 1 ) r = G  -~ (5) 

Let the orthogonal and normalized basis set in the 
parallel (physical) space be (El, E2, E3) and that in 
the perpendicular (complementary) space be 
(E4, Es, E6). Suppose that the relationship between e 
and E = [El, E2, ..., E6] is 

e r =  ASE r. (6a) 

Then, we have 

e * r =  (1/A)SE r, (6b) 

where S = [S/, St] is a 6 x 6 matrix of which the left 
part S~ and the right part Sr are 6 × 3 matrices. 

The 6D basis vectors e and e* may be decomposed 
into parallel and perpendicular components 

e = e II + e ± 
e*  = e *ll + e*  ± (7)  

and have the following expressions: 

(ell) r =  A[St0]E r (8a) 

(e ±)T= A[OSr]E T (8b) 
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(e*ll)r = (1/A)[SzO]E r 

(e* ± )r  = (l/A)[0 Sr]E r. 

By inserting (6a) into (1), we obtain 

SS r = I 

( 9 a )  

(9b) 

(lO) 
with I being a unit matrix. From (6) and (10), we 
obtain 

E r =  (1/A)gre r (1 la) 

E r  = ASr(e*) r . ( l lb )  

Then, by inserting ( l l a )  into (8a), we obtain an 
expression for the projection matrix pIl: 

(ell) r = pll e r  (12a) 

with 

pII = S , .  S r. (12b) 

Similarly, we have 

(e±) T = P±e  T (12c) 

with 

and 

P "  = S r . S  r (12d) 

pII + p l  = I. (13) 

A quasilattice is obtained by projecting a subset 
L(r6 L) of the 6D lattice points into the physical 
(parallel) space. The selection of the subset L(r~-) of 
the lattice points is accomplished by first construct- 
ing a 3D hyperplane l(rd-) parallel to the physical 
space and intersecting the perpendicular space at the 
point with the position vector rd-. 

l (r~)=((Xl 'Xz '""x6l~x'~i  = r~ )  

where the x; are the coordinates of a point in 6D 
space relative to the basis vector e~. The subset L(r~-) 
in the 6D lattice is now given by the definition 

L(r~-) = xie~ = r~ , 
i i=l 

where Int (x,) denotes the integer part of xi. These 6D 
lattice points are just the origin vertices of all 6D 
hypercubic cells cut by the hyperplane l(r6L). Then, 
the 3D quasilattice LIl(r~) is obtained by projecting 
the subset L(r~-): 

{=Zl Int [__Z1 xie } LIl(r~ -) = (xi)ei II ? = r~- . (14) 
i i 

2.2. Projection matrix for a cubic quasiperiodic 
crystal 

For the CQC, we choose the 6 × 3 matrix St in 
(8a) as 

m g 

1 0 0 

0 1 0 

1 0 0 1 
S l - ( l + a 2 ) m  a 0 0 

(15) 

0 a 0  

0 0 a  

where a - - 2 - 1 / 2  is an irrational parameter (see § 3). 
Fig. l(a) shows the relationship between ei II and the 
unit vectors El, E2, E3 in the parallel space as 
selected by (15). Inserting (15) into (12b), we get the 
expression for pII as 

1 pII _ _ _  
(1 + G 2) 

I 

1 0 0 a 0 0 

0 1 0 0 a 0 

0 0 1 0 0 a 

G 0  0 a 2 0  0 

0 G 0  0 a 2 0  

0 0 G 0  0 a 2 

, ( 1 6 )  

and that for P J- from (13) as 

1 p . l .  _ _  
( 1 + G 2) 

m 

G: 0 0 - - a  

0 a 2 0 0 

0 0 a 2 0 

- - a  0 0 1 

0 - - a  0 0 

0 0 - - a  0 

According to (17) and (12c), we 
follows: 

with 

Sr = (1 + 0~2) 1/2 

(e±)r  = ASre r 

a 0 

0 a 

0 0 

- 1  0 

0 - 1  

0 0 

which is shown in Fig. l(b). 

m 

0 0 

- G  0 

0 - G  
(17) 

0 0 

1 0 

0 1 

can select e{ as 

(8b) 

0 

0 

G 
0 ' (18) 

0 

- 1  

2.3. Coordinate transformation and zone relation of 
quasiperiodic crystals 

A 6D reciprocal vector g may be expressed as 

g = n*e *r (19a) 



R. WANG,  C. QIN, G. LU, Y. F E N G  A N D  S. XU 369 

with 

n* = [n]*n2* ...n6*] 

being the 6D indices of g or 

g = gll + g" 

with 

gll = (gllg211g31l) E2 (19c) 

1:3 
and 

g± = (g~-g~-g~-) E5 (19d) 

E6 
being, respectively, the components in physical and 
complementary spaces of the 6D vector g. Noticing 
that the relationship between different components 
of a reciprocal vector is the same as that between the 
corresponding basis vectors, we get the expressions 
from ( l l a )  for the components of gll and g± as 
follows: 

gz Ill = A*Sf(n*) T (20) 

g3ll_] 

and 

g2Z[ = A*Sf(n*) r. (21) 

gel 
Similarly, the components of a 6D lattice vector 

R = n e r = R I l + R  ± 

=[R,HR:R:] E2 +[R]~R?R3 ~] E, 
E~ E6 

(22) 

(19b) 

E31 [e~' 
I e~' E61 e~e ~ 

6 

(a) (b) 
Fig. 1. Basis vectors (a) e~ H and (b) e, ± of the CQC. 

have the following expressions: 

R: / = ASfnT 
R311..] 

and 

with 

I Rl± 1 R? 
Re 

(23) 

is expressed as 

n = {n,nz...n6] 

being the 6D indices of R relative to the basis vectors 
el. 

In the case of crystals, the zone relation 

R- g = 0 (25a) 

[u v w] = 0, (25b) 

where [uvw] are the indices of the zone axis R and 
[hkl] are the indices of reciprocal vectors g belonging 
to the zone axis R. In the case of quasiperiodic 
crystals, the zone relation 

RII. gll = 0 (25c) 

can be obtained from (20), (23) and (12b) to be 

npIIn * r =  0. (25d) 

2.4. Diffraction-intensity calculation for the cubic 
quasiperiodic crystal 

In the present work, we apply the same method to 
calculate the diffraction intensities of the CQC as 
that used by Zhao, Wang, Cheng & Wang (1988) for 
icosahedral QC. For simplicity, we have considered 
only the simple lattice model, in which the same 
atoms, with unit atomic scattering factor f(gll)= 1, 
are placed at every quasilattice point. The special 
characteristics of the CQC compared with the 
icosahedral QC are that the tiles of the CQC are 
tetragonal prisms (including cubes) instead of 
rhombohedra and that there are only eight types of 
tetragonal prisms with nonzero volume. We denote 
v~ = [ei II × ell" e~lllA 3 as the volume of the tetragonal 
prism projected from the hypersurface with edges ei, 
ej and ek in the 6D space into the parallel space and 
Ylrnn = [e/J- x em -L • en -L [A 3 as that from the et, em and 
e. hypersurface into the perpendicular space, where l, 
m and n are the complementary indices of i, j and k: 

{l, m, n} = {1, 2, ..., 6} - {i, j, k}. 

= AS[n r (24) 
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From (8), (15) and (18), it is obvious that vijk = V;m,. 
Table 1 lists the triplets (i, j, k) and the correspond- 
ing volumes Vijk = V;m, of the CQC. In the case of a 
CQC, the fraction w, of the nth atom belonging to a 
tetragonal prism is equal to 1/8. Noticing these 
special characterists of the CQC and following the 
line described by Zhao et al. (1988), we obtain the 
scattering amplitude S(g II) per atom as follows: 

S(g II) = (l/ix) Y V;m,[sin (z;)/z;][sin (Zm)/Zm] 
i , j , k  

x [sin (z,,)/z,,] cos (zi) cos (zj) cos (zk), (26) 

where /x =[(1 + a)/(1 + G2)l/213A 3 is the projected 
volume of a 6D hypercube and is equal to the sum of 
the V~m,, that are listed in Table 1. The factor z,  in 
(26) is defined as 

z~ = zrg ± • % ± 

and the summation in (26) is over eight sets of i, j, k 
as listed in Table 1. 

2.5. Phason strains in the cubic quasiperiodic crystal 

A CQC may not be ideal but, with a phason strain 
field, [E4] 

Ar±(r II) = [Ar~±,Ar2X,Ar3 ±] E5 . 

E6 

Over a given small region of the CQC, the phason 
strain field may be described approximately as a 
linear function of the position vector 

i.e: 

rll = [rl II, r2 II, r3 II] [E,] 
E2 , 

E3 

[Arl" Ar2 x Ar3 J- ] = [rlllr21lr31l]X, (27a) 

with X being a 3 x 3 phason matrix. For a special 
case when 

X = - /3 , (27b) 

0 

the symmetry of the CQC with phason strain 
remains cubic. According to Lubensky et al. (1986), 
a linear phason strain will cause each Bragg peak to 
shift from the position pointed to by the reciprocal 
vector gll of an unstrained CQC t o  gll, = gll + Agl[ with 

[ ,~gll[q Fgl ~'~1 
Ag 311J k g3 .J 

Table 1. Triplets (i, j ,  k) and corresponding volumes 
vijk = Vim, o f  the CQC 

Triplet i, j, k Vu.JA 3 
1,2, 3 (1 +a-') -32 
1, 2, 6 a( 1 + a2) - 3 .- 
1 , 3 , 5  a ( l  + a  2) 32 
1 , 5 , 6  a2( I 4 a 2) 32 
2, 3 , 4  a(  l + a2) -32 
2, 4, 6 a2(l + a 2 )  32 
3, 4, 5 a2( l + ce2) 3,~ 
4, 5, 6 a3(l + a2)-32 

the corresponding perpendicular components g i  
being kept unchanged. By using (20) and (21), we 
obtain 

g,,,,q 
g211' / 

g3 I1' J 

A* 
(1 + a2)  I/2 

(1 + aft)n1* + ( a -  fl)n4*] 

(1 -I- afl)n2* + (a -- /3)n5"1 . 

(1 + a/3)n3* + (a -- fl)n6*l 

(28) 

2.6. Section-projection diagrams o f  quasicrystalline 
tilings 

The structure of a quasicrystalline tiling with 
phason and phonon strains can be described visually 
by a section-projection diagram (Katz & Duneau, 
1986), which is drawn by cutting the tiling along a 
given quasilattice plane P and projecting the corre- 
sponding 2D boundary surfaces into P. If the dis- 
tance of a plane P from the origin along the direction 
D in the parallel space is d, then the quasilattice 
point set P(r0 ±, d) on the 2D boundary surface of the 
plane P can be extracted from (14) to be 

P(ro±,d) 

{ Z l n t  ] Z  ~ } = ( x i ) e i  II x,e; ± = ro ± and D- X z e i  11 = d . 
"= i = I  i = 1  

(29) 

From the 6D coordinates Int (x;) relative to the 
basis set e; and using the coordinate transformation 
(23), we obtain the coordinates r; II (i = 1, 2, 3) of the 
quasilattice points surrounding the plane P relative 
to the basis set Ei (i = 1, 2, 3) in 3D physical space. 
The section-projection diagram is now obtained by 
projecting these points orthogonally onto the plane P 
and connecting each pair of projected points that are 
neighbouring lattice points in the 6D space. 

A section-projection diagram of the QC with 
phason strain Ar ± and/or phonon strain Ar II is 
obtained by replacing r~ in (29) by r0 ± - A r  ± and 
adding the displacement Ar IL to each position vector r II 
of the quasilattice point surrounding the plane P. 
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Table 2. Sequence numbers, &dices n]*, n2*, ..., n6* 
and calculated intensities I/Io of reflections of the 

CQC 

Spot  n,* n2* n3* n4* %* n6* I/I0 
0 0 0 0 0 0 0 1.000 
1 0 1 1 0 0 0 0.717 
2 0 2 2 0 0 0 0.264 
3 0 I 1 0 2 2 0.326 
4 0 2 2 0 2 2 0.796 
5 0 3 3 0 2 2 0.990 
6 2 0 0 0 0 0 0.514 
7 4 0 0 4 0 0 0.633 
8 6 0 0 4 0 0 0.981 
9 0 0 0 1 1 1 0.369 
10 0 1 I I 1 1 0.677 
11 0 2 2 1 1 1 0.639 
12 2 0 0 2 0 0 0.892 
13 2 1 1 1 1 I 0.892 
14 2 2 2 1 1 1 0.843 
15 2 3 3 1 3 3 0.564 
16 2 1 I 2 0 0 0.639 
17 2 2 2 2 2 2 0.709 
18 2 3 3 2 2 2 0.884 
19 4 0 0 2 0 0 0.796 
20 4 I 1 3 1 1 0.935 
21 4 2 2 3 1 1 0.883 
22 4 3 3 3 3 3 0.592 
23 1 1 2 0 0 0 0.343 
24 1 1 2 0 2 2 0.339 

3. Experimental and simulation methods 

Pure vanadium, nickel and silicon were melted into 
an alloy of nominal composition V6Nil6Si 7 and then 
rapidly quenched. Transmission electron microscope 
(TEM) specimens were prepared by ion-milling and 

were examined with EM420 and EM430 electron 
microscopes. The experimental detail was as 
described by Feng et al. (1987). 

The simulation procedure of an EDP of the zone 
axis R tl is as follows: all the 6D reciprocal-lattice 
vectors g(n]*, . . . ,  n 6 * )  with - 4 < n;* _< 4 are selected 
in turn and their corresponding 3D vectors gll'(n:*, 
. . . ,  n 6 *  ) with a phason parameter /3 are calculated 
according to (28). Then, we only consider reflections 
gll satisfying the zone relation (25c) and calculate 
their diffraction amplitude S(g II) according to (26). 
Since the scattering amplitude S(g II) depends mainly 
on the perpendicular component g±, which remains 
unchanged when the phason parameter /3  is varied, 
we can assume that the diffraction intensity is 
independent of /3 .  For this reason, we first tried a 
series of a values. By comparing the simulated EDPs 
with the experimental ones, we found good 
agreement in diffraction intensities if we took the a 
value to be 0.68-0.72 and the following reflection 
condition: 

h i *  + n 2 *  + n 3 *  = 2ml 

= ~" 2m2 
ns* q- n 6 *  L 4 m 2  

= ~" 2 m 3  

n 6 *  "~- n 4 *  L 4 m 3  

= [ 2 m 4  
n4* + n5* [ 4m4 

when n4* --- 0 

when %* = 0 

when n6* = 0 

(30) 

0 ° 0 o 0 8 
0 O ,  o o  oO 0 Oo o o  ° 0  o 0 0 I~ 

(~ 0 0 oo 0 0 
0 0 o o  o 0  0 O o  o o  0 o o 
o o • o • o o 0 0 o 12 

o o . .o  o . . . .  o o o o .  o o 
o oo  o o o o o o o o o 0 0 o 

6 ; " ~ , ~  • ; . o o o o 
o O0  0 O0  o 0 o o 0 

1 2 3 ( ; ( 3  0 0 0 0 0 
0 O ° o o  oO 0 O .  o o .  0 0 oo 0 0 

o o 0 0 o 
0 O o  o o  0 0 0 o o  * 0  0 o o o 
o • • o * o o 0 0 0 0 

0 0 0 o : 0 . . . .  0 0 0 0 0 0 
o o • 0 o ,  o o 0 0 0 o o  0 0 

(~ • • ( ~  o 6 o 0 o o 
0 o o  " 0  O o  o o  0 o o 

0 0 oi: o 0 
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o 0 0 o o 
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0 o o  0 0 
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oo Oo Oo. o oo Oo %. oO °Oo 

o°oo°o o d o°oo% % o o % . %  

oo oo 0 0 oo 0 0 Oo oo 

IIll 
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Fig. 2. S imula ted  E D P s  ( top)  and  sec t ion-pro jec t ion  d i ag rams  ( b o t t o m )  p e r p e n d i c u l a r  to  the [I00] (left), [01T] (middle)  and  [1 IT] (r ight)  

zone  axes o f  the C Q C .  T h e  length  o f  the scale ba r  is equal  to  a = A/(l + a2) 1/2. 



372 PROJECTION DESCRIPTION OF CUBIC QUASIPERIODIC CRYSTALS 

with the m,. being integers. Then, we fixed te at 2-i/2 
and varied fl to obtain good agreement in reflection 
intensities as well as positions. 

In some cases, the section-projection diagrams per- 
pendicular to the zone axes [100], [011] and [lIT] 
were drawn to describe visually the features of the 
CQC tilings with various phason strains. 

4. Results 

Fig. 2 shows the simulated EDPs (top) and corre- 
sponding section-projection diagrams (bottom) per- 
pendicular to the [100] (left), [011] (middle) and 
[liT] (right) zone axes when a = 2 -1/2 and fl = 0. 
The sequence numbers marked at the reflection 
spots, their 6D indices n:*, ..., n6* and calculated 
intensities I/Io are listed in Table 2. In the present 
paper, the size of each circle of a simulated EDP is 
proportional to the reflection intensity. In the simu- 
lated twofold-axis EDPs, we also marked the spots 
12, 16 and 19, which are extinct according to (30) but 
can appear by multiple reflection. The distribution of 
reflections shows an aperiodic feature with cubic 
point symmetry but there is no apparent periodic 
main-reflection lattice consisting of strong diffraction 
peaks surrounded by weak satellite peaks. Therefore, 
it is not appropriate to attribute it to a cubic in- 
commensurate crystal and we use the term 'cubic 

• • • • • • • 

• • • • • • • 

o O o  • • 

• • • • • E) • 

• • • • • • • 

• q )  • • • 

quasiperiodic crystal' (CQC) instead. The section- 
projection diagrams reveal that the so-called CQC 
tiling consists of large and small cubes of edges of 
A/(1 + 0~2) i/2 and aA/(1 + 0~2) I/2, respectively, and 
tetragonal prisms with these edges. Their distribution 
shows aperiodic features and the number ratio of the 
large and small cubes is l :a  3= 1:0.35. 

The relative reflection intensities of all our photo- 
graphed EDPs are in good agreement with Fig. 2. 
Nevertheless, the reflection-position distribution in 
an EDP may change when the observed area is 
changed and we have not yet observed an EDP that 
possesses the same reflection-position distribution as 
in Fig. 2. This fact indicates that we have not yet 
observed experimentally a perfect CQC. One set of 
experimental EDPs is shown in the upper part of 
Fig. 3. The main feature of these EDPs is the same as 
that of Fig. 2 but the reflection distribution is differ- 
ent. By choosing the 6D lattice constant A = 1.07 nm 
and an appropriate phason parameter fl = 0.303, we 
obtain good agreement between the experimental 
(top) and simulated (bottom) EDPs as shown in 
Fig. 3. 

In general, EDPs of a given [100], [011] or [111] 
zone axis from different regions of the rapidly solidi- 
fied V6Ni~6Si7 alloy have the same main features but 
different reflection distributions corresponding to 

different  phason strains. For example, Fig. 4 shows a 
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(top) and simulated (bottom) [100] (left), [011] (middle) and [1 IT] (right) zone-axis EDPs of a rapidly quenched 
V6Nin6Si7 alloy. 
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series of [ 100] zone-axis EDPs from different regions 
of the alloy. By choosing different appropriate values 
of the phason parameter/3,  we succeeded in simulat- 
ing these EDPs as shown in Fig. 5 with (a) fl = 
0.303, (b) fl = 0.443, (c) fl = 0.588 and (at) fl = 0.707. 
The corresponding section-projection diagrams are 
shown in Fig. 6. 

From Figs. 2, 4 and 5, it is obvious that with the 
increase of the 13 parameter the separation between 
reflections 1 and 3 decreases and they converge into a 
single spot when fl = 0.707. The same situation holds 
for reflections 2 and 4. However, the shift of reflec- 
tion 5 is negligible. Fig. 4 reveals also that the 
variation of the reflection intensities is negligible 
when the parameter fl is changed as we assumed in 
{}3. 

Fig. 6 shows that the cubic quasiperiodic lattice 
with phason strain consists of cubes and tetragonal 

t l  

prisms. The relative number of small cubes decreases 
with increasing fl and the CQC becomes a cubic 
crystal consisting only of large cubes when fl = 
0.707. Its EDP (Figs. 4d and 5d) resembles that of a 
body-centred-cubic (b.c.c.) crystal, e.g. the alloy 
phase of a -Mn or y-brass structure, with lattice 
constant a "" 0.88 nm. 

5. Discussion 

Substituting the indices n,*, ..., n6* of the reflections 
1, 2, 3, 4 and 5 shown in Fig. 2 into (28), we obtain 
the expression for the magnitudes of these reciprocal 
vectors as follows: 

g~l'= K[(nE* + oms*) + (n2*ot - ns*)fl] 

with 
K= 2'/2A*/(1 + a2)1/2; 

(a) 
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Fig. 4. [100]-zone-axis EDPs from different regions of the rapidly solidified V6Ni,6Si7 alloy. 
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hence, we have 

gll'(1) = K(1 + 0.707/3) 

g~J'(2) = K(2 + 1.414/3) 

g~l'(3) = K(2.414-  1.293/3) 

gll'(4) = K(3.414 + 0.586/3) 

gll'(5) = K(4.414 + 0.121/?). 

From these expressions, it is apparent that, with the 
increase of the/3 parameter, gl l ' (3)  and gll ' (4)  decrease 
and gll ' (1) ,  ~1 ' (2 )  a n d  gl l ' (5)  increase. But the incre- 
ment of gl l ' (5)  is very small, less than 2% when /3 
increases from 0 to 0.707. This is in good agreement 
with the observation described in § 4. 

When 1 + a/3 = mc and a - / 3  = nc (m and n are 
integers without any common divisor except 1), (28) 
becomes 

I 
g l l l ' q  F mn:* -t-nn4* 3 
g 2 l l , /  _ cA* / m n 2  , nns,i. 
g311, A (1 "]- Od2) I12 q-  L mn3* + nn6*J 

Table 3. Phason parameters /3 and the lattice types 
and lattice parameters a of  the corresponding 

crystalline approximants 

/3 m n c a (A) Lattice type 
- 2 t'2 0 l 2.121 6.2 f.c.c. 
- 0.536 1 2 0.621 21.1 b.c.c. 

O. 153 2 1 0.554 23.7 f.c.c. 
0 . 7 0 7  1 0 1.5 8 .7  b . c . c .  

and hence all the glt, become reciprocal vectors of a 
cubic crystal of lattice constant a =  (1 + a2)l/2A/c. 
Some possible crystalline approximants of the CQC 
are listed in Table 3. From the values m and n and 
the reflection condition (30), we can also obtain the 
reflection condition for gll a n d  hence the lattice type 
of each approximant. The b.c.c, approximant with/3 
= 0.707 is exactly the one shown in Fig. 4(d). The 
face-centred cubic (f.c.c.) approximant with /3 = 
0.153 was observed by Feng et al. (1990) and occurs 
when reflections 2 and 3 converge into one single 
spot. 

In the present work, we have calculated the dif- 
fraction intensities by a simplified kinematical 
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Fig. 5. Simulated [100] zone-axis EDPs of  the CQC. 13 = (a) 0.303, (b) 0.443, (c) 0.588 and (d) 0.707. 
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(a) (b) 

(c) (d) 

Fig. 6. Section-projection diagrams of the CQC perpendicular to the [100] zone axis. fl = (a) 0.303, (b) 0.443, (c) 0.588 and (d) 0.707. 

approximation and a simple lattice model, which 
may be the reason that there exist some minor 
discrepancies between the experimental and simu- 
lated EDPs. Moreover, the reciprocal points of any 
QP structure are generally distributed very densely. 
Hence, there may be some reciprocal points that 
contribute to the [uvw] zone axis EDP, although they 
do not belong to this zone axis, lying somewhat 
above or below the (uvw)* reciprocal plane through 
the origin. On the other hand, in a simulated [uvw] 
zone axis EDP, we choose only those points that 
belong exactly to this zone axis according to (25c). 
For example, the weak spots arrowed in the experi- 
mental [111] zone axis EDP in Fig. 3 were not 
simulated because they are from the reciprocal points 
lying somewhat above the (liT)* reciprocal plane. 
For a detailed discussion of this effect, see Feng et al. 
(1990). 
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